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Single-view geometry

• Structure and depth cannot be inferred from a 2D image 

(without a scene model or other kind of prior information)
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• All points along a ray that passes through a camera center are projected 

into the same point in the image plane.

• Impossible to infer 3D point from a single 2D point
(without prior on the scene structure, that is)

𝒙 𝑿?
𝑿?

The reason behind depth ambiguity
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Taking advantage of ambiguity

• Anamorphosis (earlier than 15th century)

Author: Julian Beever
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Take two images = Stereo!

Photos by: Jim Gasperini 7

• Much easier using a pair of views...



STEREO GEOMETRY AND SCENE 
RECONSTRUCTION

Machine perception

8



Depth estimation by triangulation

• The basic principle is triangulation

• Reconstruction calculated by intersection of two rays

• Assume:

• Known camera position in 3D (calibration)

• Correspondence between points is known
Slide credit: Steve Seitz

Left camera Right camera

?
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Triangulation by intersection

• Intersect a pair of visual rays, corresponding to 𝑥1and 𝑥2. 

• But because of numerical errors and noise, the rays will not intersect in practice!

O1
O2

x1
x2

X?

Slide credit: Svetlana Lazebnik10



• Find the shortest segment connecting the two rays and take the value 𝑋

in the middle.

• Not very principled…

O1
O2

x1
x2

X

Slide credit: Svetlana Lazebnik

Triangulation: Geometric approach
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𝐚 × 𝐛 =

0 −𝑎𝑧 𝑎𝑦
𝑎𝑧 0 −𝑎𝑥
−𝑎𝑦 𝑎𝑥 0

𝑏𝑥
𝑏𝑦
𝑏𝑧

= [𝐚×]𝐛

Recall: Vector product written in matrix form:

Triangulation: A linear algebraic approach

𝑷1 𝑷2
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𝜆1x1 = P1X
𝜆2x2 = P2X

x1 × P1X = 0
x2 × P2X = 0

[x1×]P1X = 0
[x2×]P2X = 0



Two independent equations each, 3 unknowns in X.

• Write a homogeneous system.

𝑨𝑿 = 𝟎

• Solve by SVD. Solution for 𝑿 is the 

eigenvector corresponding to the smallest 

eigenvalue.

• Much better than geometric approach, since 

it easily generalizes to multiple cameras.

Triangulation: Linear algebraic approach

𝑷1 𝑷2
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𝜆1x1 = P1X
𝜆2x2 = P2X

x1 × P1X = 0
x2 × P2X = 0

[x1×]P1X = 0
[x2×]P2X = 0



• Find X that minimizes a sum of reprojection errors!

O1
O2

x1
x2

X?

x’1

x’2

Image credit: Svetlana Lazebnik

𝑑2(𝑥1, 𝑃1𝑋) + 𝑑2(𝑥2, 𝑃2𝑋)

Triangulation: Nonlinear refinement
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• Find X that minimizes a sum of reprojection errors!

• Most accurate, but does not have a closed-form solution.

• Requires iterative algorithm (bundle adjustment)

• Initialize by DLT.

• Optimize by Gradient descent or Gauss-Newton or Levenberg-Marquardt 

(see F&P Chapter. 3.1.2 or H&Z Appendix 6).

Slide credit: Bastian Leibe 15

Triangulation: Nonlinear refinement

𝑑2(𝑥1, 𝑃1𝑋) + 𝑑2(𝑥2, 𝑃2𝑋)



But in general correspondences are unknown

• Correspondences across images are usually not known in advance.

• Assume we know the location of the right camera with respect to the 

left camera.

• Given a point in the left image, can we constrain 

the search region of the point 

in the right image?

16

Right cameraLeft camera

?



Epipolar constraints

• If the point p in the left image is known, where to look for its correspondence p’ in 

the right image?

• Potential matches for p necessarily lie on the corresponding epipolar line l‘.

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
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A line!

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html


Example
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Derivation of the epipolar constraint

• The epipolar constraints, for a general stereo system:

given a point 𝒙 in the left image what is the equation of the epipolar line

in the right image?

• Will look at two cases:

• Calibrated cameras (known calibration matrices K, K’)

• Noncalibrated cameras (unknown calibration matrices K, K’)

𝒙
𝒍 =?

19

Left image Right image



Epipolar constraint: A calibrated system

𝐗 = 𝐑𝐗′ + 𝐓

𝐓 × 𝐗 = 𝐓 × 𝐑𝐗′ + 𝐓 × 𝐓

= 𝐓 × 𝐑𝐗′

𝐗𝑇 𝐓 × 𝐗 = 0

𝐗𝑇 𝐓 × 𝐑𝐗′ = 0p
la

n
e

 n
o

rm
al

Note: X‘ is written in c.s. of O‘, while T and X are written in c.s. of O!
Write transformation of 𝑋′ to 𝑋.

𝑿′𝑿

20Slide credit: Kristen Grauman



• Points on image plane defined as 𝑝 = 𝜆1𝑋 and 𝑝′ = 𝜆2𝑋
′, where 𝜆1and 𝜆2 are 

scalars. 

• Then this holds: 𝒑𝑇𝑬𝒑′ = 𝟎

• Matrix 𝑬 is called an essential matrix, that relates the corresponding image points 

[Longuet-Higgins 1981]

Epipolar constraint: A calibrated system

𝐗𝑇 𝐓 × 𝐑𝐗′ = 0

𝐗𝑇 [𝐓×]𝐑𝐗
′ = 0

Let  𝐄 = [𝐓×]𝐑 , then 𝐗𝑇𝐄𝐗′ = 0

21

A 3D point written in the left 
and the right c.s., respectively.



• A 3D point is mapped to points p and p’ which are related by 

𝒑𝑇𝑬𝒑′ = 𝟎.

𝒍′ = 𝒑𝑇𝑬 𝑇 the epipolar line vector 𝒍′, defined in Π′, containing 𝒑′.

𝒍 = 𝑬𝒑′ the epipolar line vector 𝒍, defined in Π, containing 𝒑.

Epipolar constraint: Essential matrix
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https://brilliant.org/wiki/do
t-product-distance-
between-point-and-a-line/



• Relates images of corresponding points (meters) in both cameras at a 

given rotation and translation.

• Can be calculated from known extrinsic parameters:

𝐄 = [𝐓×]𝐑

Translation and rotation of 
the second camera with 
respect (w.r.t.) the first.

Epipolar constraint: Essential matrix
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• Now consider image points in pixels!

• 𝑥′ & 𝑥 … image plane coordinates 

(meters)

• ො𝑥′ & ො𝑥… image sensor coordinates 

(pixels)

• Epipolar constraint for a calibrated system:

𝑥𝑇𝐸𝑥′ = 0

• Coordinates related by camera calibration matrix 𝑲:

• Camera calibration matrices K and K’ unknown→ derive the epipolar constraint for 
the points in pixels

(meters)(pixels)
ො𝑥 = 𝐾𝑥 ො𝑥′ = 𝐾′𝑥′

(meters)(pixels)

Epipolar constraint: A noncalibrated system
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X

x x’

ො𝑥 = 𝐾𝑥
ො𝑥′ = 𝐾′𝑥′

ො𝑥, ො𝑥′ in image pixels ; 𝑥, 𝑥′ in meters 

Epipolar constraint: A noncalibrated system
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(meters)(pixels)

Epipolar constraint: 𝑥𝑇𝐸𝑥′ = 0
(meters)(meters)

𝑥 = 𝐾−1 ො𝑥

𝑥′ = 𝐾′−1 ො𝑥′
(meters) (pixels)

ො𝑥𝑇𝐾−𝑇𝐸𝐾′−1 ො𝑥′ = 0

𝐹 = 𝐾−𝑇𝐸𝐾′−1

Fundamental matrix
(Faugeras and Luong, 1992)

ො𝑥𝑇𝐹 ො𝑥′ = 0



• Fx’ is epipolar line corresponding to x’ (l = F x’)
• FTx is epipolar line corresponding to x  (l’ = FTx)
• Fe’ = 0   in   FTe = 0
• F is singular (rank=2)
• F has seven DoF

X

x x’

ො𝑥𝑇𝐸 ො𝑥′ = 0 𝑥𝑇𝐹𝑥′ = 0 with 𝐹 = 𝐾−𝑇𝐸𝐾′−1

Epipolar geometry: Fundamental matrix
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Epipolar geometry: Definitions

• Baseline: a line connecting the camera centers.

• Epipole: point where the baseline punctures the image plane.

• Epipolar plane: plane connecting two epipoles and a 3D point.

• Epipolar line: intersection of epipolar plane and image plane.

• All epipolar lines of a single image intersect at the camera epipole.

27



Special case: Geometry of a simple stereo

• Now consider a calibrated stereo system with parallel optical axes.

• This will simplify the search problem

significantly… 

𝑂𝑟

𝑂𝑙

?

28

𝐩Τ𝐄𝐩′ = 0

𝐄 = 𝐓×𝐑

𝒍′ = 𝒑𝑇𝑬 𝑇 [𝑥, 𝑦]

[𝑥′, 𝑦′]
Given [𝑥, 𝑦] in the left 
image, where will the 
corresponding 𝑥′, 𝑦′ be in 
the right image?



Special case: Geometry of a simple stereo

29

𝐩Τ𝐄𝐩′ = 0𝐄 = 𝐓×𝐑 𝒍′ =?



Geometry of a simple stereo

• Parallel optical axes with aligned image lines

• A 3D point written in the coordinate 

system of the left camera: 𝐿𝑃.

• Baseline 𝑏𝑥: displacement of the right

camera along 𝑥𝐿.

• Focal length 𝑓: distance of image

planes (in both cameras) from

their projection centers.

30Images credit: Trym Vegard Haavardsholm

𝑓
Depth estimation simplifies…

𝐿𝑃 =
𝑋
𝑌
𝑍



Geometry of a simple stereo

• The corresponding points lie on the same line 

of pixels (epipolar line).

31Images credit: Trym Vegard Haavardsholm

𝐿𝑃 =
𝑋
𝑌
𝑍

𝑓



Geometry of a simple stereo

• The corresponding points lie on the same line 

of pixels (epipolar line)

• Align the right projection onto the left

image (displace coordinates

of the right projection by “−𝑏𝑥”). 

• Depth from disparity:

𝑍= 𝑓
𝑏𝑥
𝑑

• 3D from disparity

32Images credit: Trym Vegard Haavardsholm

𝑓
𝑋= 𝑥𝐿

𝑏𝑥
𝑑

𝑌= 𝑦𝐿
𝑏𝑥
𝑑

𝑍= 𝑓
𝑏𝑥
𝑑

, ,

𝐿𝑃 =
𝑋
𝑌
𝑍



Stereo image rectification

• Convenient if the lines for searching the matches 

correspond to the epipolar lines – as simple as in 

parallel cameras system

• Reproject image planes into a common

plane, parallel to the baseline.

• Two homographies (3x3) – matrix transformation 

for reprojection of left and right image planes.

C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99

Slide adapted from Li Zhang 33

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Stereo image rectification

34



Disparity relates the right image to the left

• Assuming perfectly aligned camera axes

• Coordinate of a corresponding point in the right image == 

𝑥 coordinate of the point in the left camera + disparity value at that point

35

(𝑥, 𝑦)

Epipolar line

(𝑥, 𝑦)(𝑥, 𝑦)

𝑑(𝑥, 𝑦)
(𝑥 + 𝑑(𝑥, 𝑦), 𝑦)

Left image: I(x,y) Right image: I´(x´,y´)Disparity map d(x,y)



Disparity estimation

• Disparity estimation problem: for each pixel in the left image, find the 

corresponding pixel in the right image. Difference in 𝑥 is disparity.

36

Epipolar lines

Left image: I(x,y) Right image: I´(x´,y´)Disparity map d(x,y)

RL ?



Disparity estimation

• For a patch centered at a pixel in the left image

• Compare to all patches in the right image

along the epipolar line (same line)

37Images credit: Trym Vegard Haavardsholm

NCC( , ) = 0.01



Disparity estimation

• For a patch centered at a pixel in the left image

• Compare to all patches in the right image

along the epipolar line (same line)

• Select the patch with greatest similarity.

• Difference in position of left patch and right patch is the disparity.
38Images credit: Trym Vegard Haavardsholm



Disparity estimation

• In practice the disparity values are restricted

to a reasonable range of viable disparities.

• E.g.: disparity for an object very far away from the target is 0.

𝑑𝑚𝑎𝑥 is specified by the minimum distance of an object from the camera 

(see geometrical model of a simple stereo system) 
39Images credit: Trym Vegard Haavardsholm



Disparity: influence of the window size

• Small window size 𝑊: 

• Details potentially better estimated

• Noisy disparity

• Fast(er) computation

40

• Large window size 𝑊: 

• Details potentially lost

• Smooth disparity

• Slow(er) computation

Small 𝑊 Large 𝑊Left image

Images credit: Trym Vegard Haavardsholm



Disparity quality

41

Well-defined
strong response

Weak response due to occlusion

Ambiguous
response

Images credit: Trym Vegard Haavardsholm



Global disparity optimization

• Consider a single line (𝑁 pixels)

• Similarity scores* for different

disparities for each pixel.

• Global cost of selecting 

disparities 𝑑 = (𝑑1: 𝑑𝑁) :

42http://lunokhod.org/?p=1356

𝑑 = 0

𝑑𝑚𝑎𝑥

𝐸 𝑑𝑖 = 𝐸𝑑𝑎𝑡𝑎 𝑑𝑖

𝐸𝑑𝑎𝑡𝑎 𝑑𝑖 = 𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖)

“Energy” output w.r.t. location

𝑥 = 0 𝑥 = 𝑁
𝐸 𝑑 =

𝑖

𝐸𝑑𝑎𝑡𝑎 𝑑𝑖

∗
Similarity 0 means “no match”, 1 means “perfect match”



Global disparity optimization

43http://lunokhod.org/?p=1356

𝑑 = 0

𝑑𝑚𝑎𝑥

𝐸 𝑑𝑖 = 𝐸𝑑𝑎𝑡𝑎 𝑑𝑖

𝐸𝑑𝑎𝑡𝑎 𝑑𝑖 = 𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖)

Similarity output w.r.t. location

𝑥 = 0 𝑥 = 𝑁

• Disparity calculated independently at each pixel.
• Additional constraints can be imposed on the set of 

viable disparity estimates.



Disparity constraints Constraints:  

• Order: Points on a single 

surface appear in the same 

order in both views.

• Slow local depth change: 

smooth surfaces should result 

in smooth disparity.

Order of points constraint violated

44

depth



Global disparity optimization

• Consider a single line (𝑁 pixels)

• Similarity scores for different

disparities for each pixel.

• Global cost of selecting 

disparities 𝑑 = (𝑑1: 𝑑𝑁) :

45http://lunokhod.org/?p=1356

𝑑 = 0

𝑑𝑚𝑎𝑥

𝐸 𝑑𝑖 = 𝐸𝑑𝑎𝑡𝑎 𝑑𝑖 + 𝜆𝐸𝑆(𝑑𝑖)

Smoothness term that assigns
a high cost if disparities change 
significantly between consecutive pixels

𝐸 𝑑 = large

𝐸 𝑑 = small
𝐸𝑑𝑎𝑡𝑎 𝑑𝑖 = 𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖)

“Energy” output w.r.t. location

𝑥 = 0 𝑥 = 𝑁

How to find 𝑑 with 
globally minimal 
𝐸 𝑑 ?



Global disparity optimization

• Optimal sequence of disparities 

dopt = (𝑑1: 𝑑𝑁) obtained by Viterbi 

algorithm (dynamic program).

• Apply independently to each line.

46http://lunokhod.org/?p=1356

𝑑 = 0

𝑑𝑚𝑎𝑥

Similarity score

𝑥 = 0 𝑥 = 𝑁

…
…

Disparity map

Cox, Hingorani, Rao, Maggs, “A Maximum Likelihood Stereo Algorithm,” CVIU, Vol 63(3), 1996.

𝐸 𝑑𝑜𝑝𝑡 = minimal



Semi global block matching (SGBM)

• Apply line-based optimization across several directions in the image …

47http://lunokhod.org/?p=1356



Semi global block matching (SGBM)

• … aggregate disparity energies from all direction-optimal assignments 

and take the disparity at each pixel that received a minimum energy.

48

Heiko Hirschmuller, “Stereo processing by semiglobal matching and mutual information”. TPAMI, 2008

http://lunokhod.org/?p=1356

Left-to-right line optimization After aggregating 8-direction energies



Application: View interpolation

Right image

Slide credit: Svetlana Lazebnik 49



Left image

Application: View interpolation

Slide credit: Svetlana Lazebnik 50



Application: View interpolation

Disparity

Slide credit: Svetlana Lazebnik 51



Application: View interpolation

Slide credit: Svetlana Lazebnik 52



Previously at MP… 

53

• A system of two or more cameras

• A system of perfectly aligned cameras 𝑍= 𝑓
𝑏𝑥
𝑑

, ,



Video view interpolation

http://research.microsoft.com/IVM/VVV/

54

L. Zitnick et al, High-quality video view interpolation 
using a layered representation, SIGGRAPH 2004

http://research.microsoft.com/IVM/VVV/


loss

loss

Recent works on CNN-based mono-depth

• Train a CNN to predict depth based on a single image

• Unsupervised training: use stereo disparity prediction consistency

55

Le
ft

Real Right

R
ig

h
t

CNN

L disparity Predicted Right

Predicted Left Real LeftR disparity

Godard et al., Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR2017

https://www.youtube.com/watch?v=jI1Qf7zMeIs&t=102s


Monodepth 2

56

Godard et al., Digging Into Self-Supervised Monocular Depth Estimation, ICCV2019  [GIT]

https://www.youtube.com/watch?v=sIN1Tp3wIbQ
https://github.com/nianticlabs/monodepth2


Reconstruction by a moving camera

• If a camera is moving freely, the “stereo system” cannot be pre-

calibrated (except from matrix 𝑲, that is)

• Actually, we are dealing with multiple “cameras”

https://www.youtube.com/watch?v=5QLutxstkw4 57



STRUCTURE FROM MOTION (SFM)
A BRIEF OVERVIEW

Machine perception

58



The aim of SFM

• Given several images of same scene

• Reconstruct the camera positions and reconstruct the 3D scene

• Assume a partially-calibrated case, in which the camera calibration 

matrices 𝑲 are known. 

Xiao, J. Multiview 3D Reconstruction for Dummies

59

+

http://vision.princeton.edu/courses/SFMedu/


SFM pipeline (calibrated cameras)

• Triangulation requires:

• Knowing correspondences.

• Knowing projection matrices

𝑷𝑗 𝑗=1:𝑀
for all 𝑀 cameras.

• Computing projection matrix 𝑷𝑗

requires: 𝑲𝑗 , 𝑹𝑗 , 𝒕𝑗

• Matrices 𝑹𝑗 , 𝒕𝑗 can be computed from essential matrix 

𝑬𝑗 between first and 𝑗-th view. 

• Matrix 𝑬𝑗 can be computed from fundamental matrix 

𝑭𝑗 and calibration matrices 𝑲1and 𝑲𝑗.

?

𝐄 = 𝐓×𝐑

𝐹 = 𝐾−𝑇𝐸𝐾′−1

60



SFM pipeline

• For simplicity, consider a pair of views with known calibration matrices 

𝑲𝟏, 𝑲𝟐

• Actually, if the camera is moving, the calibration matrices are equal 

𝑲 = 𝑲𝟏 = 𝑲𝟐

• The approach generalizes to multiple views

Image from: Xiao, J. Multiview 3D Reconstruction for Dummies

𝐾1, 𝐾2

61

?

http://vision.princeton.edu/courses/SFMedu/


Fundamental matrix estimation

• Assume known correspondences 𝑥𝑖 𝑖=1:𝑁, 𝑥′𝑖 𝑖=1:𝑁

• Estimate 𝐹 that minimizes reprojection errors

• Nonlinear optimization (Levenberg-Marquardt), requires good initial estimate.

• Usually initialized by 8-point algorithm (described next).

𝒙𝑖 𝐥𝑖′ = 𝐅𝑇𝐱𝑖

𝒙′𝑖𝐥𝑖 = 𝐅𝐱′𝑖

𝑑(𝐱𝑖 , 𝐅𝐱′𝑖) 𝑑(𝐱𝑖′, 𝐅
𝑇𝐱𝑖)

ϵ(𝐅) =
1

𝑁


𝑖=1

𝑁

(𝑑2(𝐱𝑖 , 𝐅𝐱′𝑖) + 𝑑2(𝐱𝑖′, 𝐅
𝑇𝐱𝑖))

ϵ(𝐅)

Also known as weak calibration.

62



Fundamental matrix estimation: Eight-point algorithm

x = (u, v, 1)T,   x’ = (u’, v’, 1)T

Slide credit: Svetlana Lazebnik

Coordinates of a pair of corresponding points:

Epipolar constraint: 𝒙𝑇𝑭𝒙′ = 𝟎

Minimize:

with constraint

||F||2 = 1



𝑖=1

𝑁

(𝑥𝑖
𝑇 𝐹𝑥′𝑖)

2

𝐹 ← last eigenvector(A)

Homogeneous 
system!

𝐀𝐟 = 𝟎

𝐹33 + 𝐹13𝑢 + 𝐹31𝑢
′ + 𝐹23𝑣 + 𝐹32𝑣

′ + 𝐹11𝑢𝑢
′ + 𝐹12𝑢𝑣

′ + 𝐹21𝑢
′𝑣 + 𝐹22𝑣𝑣

′ = 0

(one equation per correspondence – require 8)

63



1. Precondition: Center image points, and scale such that the standard deviation 

becomes 2 pixels.

• 𝒙 = 𝑻𝒙,  𝒙′ = 𝑻′𝒙′

2. Apply 8-point algorithm to calculate ෩𝑭 from the preconditioned points.

3. Enforce rank=2 

(decompose ෩𝑭, by SVD set the smallest eigenvalue to zero and reconstruct ෩𝑭):

4. Transform the fundamental matrix back to original units: 

Let T and T’ be the transformations used to precondition the points in each image 

separately. Then the fundamental matrix equals 𝐅 = 𝑻′𝑇෩𝑭𝑻.

Normalized 8-point algorithm

64

𝐹 = 𝐔𝐃𝐕𝑇

= 𝐔

𝑑11
𝑑22

𝑑33

𝑣11 ⋯ 𝑣13
⋮ ⋱ ⋮

𝑣31 ⋯ 𝑣33

𝑇

SVD

Set d33=0 and reconstruct F: 𝐹 = 𝐔
𝑑11

𝑑22
0

𝑉𝑇



• In general, the correspondences are unknown

• Jointly find the fundamental matrix F AND the correspondences!

(pairs across two views (u’,v’) ↔ (u,v)).

• Approach

1. Find keypoints in each image

2. Calculate possible matches (potential matches)

3. Robustly estimate the epipolar geometry by RANSAC

Slide credit: Kristen Grauman

Fundamental matrix estimation
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1. Find key-points (eg., Harris corners)

Fundamental matrix estimation

66Slide credit: Kristen Grauman



2. Find correspondence using proximity constraints

Fundamental matrix estimation

67Slide credit: Kristen Grauman



• Filter the correspondences by visual similarity 

(e.g.,using normalized cross correlation or by a more advanced descriptor)

Fundamental matrix estimation

68Slide credit: Kristen Grauman



• Randomly select a set of 8 correspondences

• Calculate F using these correspondences

• This gives the epipolar constraint!

• Estimate how many correspondences support F:

• Apply the estimated fundamental matrix to all points in 

image 𝐼1 and compute their epipolar lines in image 𝐼2. 

• Number of inliers: points in 𝐼2 that lie close to their 

epipolar lines calculated from 𝑭 and corresponding points 

from 𝐼1.

• Choose 𝑭 with maximal support (#inliers)

RANSAC to robustly estimate F

69Slide credit: Kristen Grauman

𝒙𝑖

𝒙′𝑖
𝐥𝑖′ = 𝐅𝑇𝐱𝑖



Input correspondences

70Slide credit: Kristen Grauman



• Correspondences consistent with the epipolar constraint

Pruned correspondences

71Slide credit: Kristen Grauman



Epipolar constraint visualized

72Slide credit: Kristen Grauman



Summary

• Robust estimation of F

• Improve by a nonlinear optimization of the cost function w.r.t. 𝑭 using 

inliers only:

Potential matches RANSAC Epipolar. geom.

ϵ(𝐅) =
1

𝑁


𝑖=1

𝑁

(𝑑2(𝐱𝑖 , 𝐅𝐱′𝑖) + 𝑑2(𝐱𝑖′, 𝐅
𝑇𝐱𝑖))
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SFM pipeline

• Multiple-view SFM

• 8-point algorithm initializes a nonlinear optimization of reprojection

errors (bundle adjustment):

• For an excellent overview of SFM see:

Xiao, J. Multiview 3D Reconstruction for Dummies

{Ri
∗, ti

∗, Xij} = argmin

𝑖



𝑗

(𝐱𝑖𝑗 − 𝐊𝑖 𝐑𝑖|𝐭𝑖 𝐗𝑖𝑗)

2

Nice video (without last part – dense reconstruction)

https://www.youtube.com/watch?v=i7ierVkXYa8
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http://vision.princeton.edu/courses/SFMedu/


Try SFM at home

• Bundler: Structure from Motion (SfM) for Unordered Image Collections

PhotoTurism video on YouTube
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https://www.youtube.com/watch?v=5rYyB4pKPRo

http://www.cs.cornell.edu/~snavely/bundler/
https://www.youtube.com/watch?v=5Ji84zb2r8s


ACTIVE STEREO
Machine perception
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Structured light stereo

• Idea: project „structured“ light patterns over the object

• Correspondence problem simplifies

• Can use only a single camera

Slide credit: Steve Seitz

Epipolar geometry still holds!

camera

projector
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Laser scanning

• Optical triangulation

• Project a laser light plane

• Move over an object (the motion has to be accurately measured!) 

• Very precise way to scan using structured light.

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

Slide credit: Steve Seitz 78

http://graphics.stanford.edu/projects/mich/


Obtained models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz

Michelangelo’s David (Florence)
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Obtained models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz 80



Multi-band triangulation

• Project multiple bands to speedup scanning

• But, which pixels belong to which band?

• Answer #1: Assume smooth surface

e.g. Eyetronics’ ShapeCam

Slide credit: Szymon Rusienkiewicz 81



Multi-band triangulation

• Project multiple bands to speedup scanning

• But, which pixels belong to which band?

• Answer #2: Project color bands (or points)

Slide credit: Szymon Rusienkiewicz

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and 
Multi-pass Dynamic Programming. 3DPVT 2002
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http://grail.cs.washington.edu/projects/moscan/


Quality control

• Automatic car inspection

• Industrial project (2016)

• Designed sensory system

and software
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In gaming industry (2010)

• Project a point pattern for ultra fast triangulation!

Accuracy and Resolution of Kinect Depth Data for Indoor 

Mapping Applications 
Kourosh Khoshelham and Sander Oude Elberink
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http://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CC8QFjAC&url=http://www.mdpi.com/1424-8220/12/2/1437/pdf&ei=haaGVLbaFIKBU6PvgLgD&usg=AFQjCNGgWjCktSSSBqlud5IkJDNotob3DA&sig2=0gFQp-KwLRtB1Ki1kV7ekg&bvm=bv.81449611,d.d24&cad=rja
http://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CC8QFjAC&url=http://www.mdpi.com/1424-8220/12/2/1437/pdf&ei=haaGVLbaFIKBU6PvgLgD&usg=AFQjCNGgWjCktSSSBqlud5IkJDNotob3DA&sig2=0gFQp-KwLRtB1Ki1kV7ekg&bvm=bv.81449611,d.d24&cad=rja


In phones (2017)

• Project a point pattern for ultra fast triangulation!
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https://www.youtube.com/watch?v=OvVKnC6gGtg
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