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Single-view geometry

e Structure and depth cannot be inferred from a 2D image

(without a scene model or other kind of prior information)




The reason behind depth ambiguity

* All points along a ray that passes through a camera center are projected
into the same point in the image plane.

* Impossible to infer 3D point from a single 2D point

(without prior on the scene structure, that is)




Taking advantage of ambiguity

* Anamorphosis (earlier than 15th century)

Author: Julian Beever
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Machine perception

STEREO GEOMETRY AND SCENE
RECONSTRUCTION




Depth estimation by triangulation

Left camera Right camera

* The basic principle is triangulation
* Reconstruction calculated by intersection of two rays
* Assume:

 Known camera position in 3D (calibration)

e Correspondence between points is known




Triangulation by intersection

* Intersect a pair of visual rays, corresponding to x;and x,.

* But because of numerical errors and noise, the rays will not intersect in practice!




Triangulation: Geometric approach

* Find the shortest segment connecting the two rays and take the value X
in the middle.

* Not very principled...

Xy




Triangulation: A linear algebraic approach

A]_Xl — P1X X1 X P1X = ( [X1X]P1X =0

/12X2 — P2X X9 X PzX = () [XZX]PZX =0

Recall: Vector product written in matrix form: <
N _ax]l \ /

= [ax]b X4 X2
P, P,




Triangulation: Linear algebraic approach

A%, = P X x; X P;X = 0 Tx1x]PX = 0
/12X2 — P2X X9 X PzX — O [XZX]PZX — O

~N

J

e

Two independent equations each, 3 unknowns in X.

* Write a homogeneous system.
AX =0

* Solve by SVD. Solution for X is the
eigenvector corresponding to the smallest

eigenvalue.

* Much better than geometric approach, since
it easily generalizes to multiple cameras.




Triangulation: Nonlinear refinement

* Find X that minimizes a sum of reprojection errors!

d?(xq, P1X) + d*(xy, P,X)




Triangulation: Nonlinear refinement

* Find X that minimizes a sum of reprojection errors!

d?(xq, P1X) + d*(xy, P,X)

 Most accurate, but does not have a closed-form solution.

* Requires iterative algorithm (bundle adjustment)

* [nitialize by DLT.

* Optimize by Gradient descent or Gauss-Newton or Levenberg-Marquardt
(see F&P Chapter. 3.1.2 or H&Z Appendix 6).




But in general correspondences are unknown

* Correspondences across images are usually not known in advance.

 Assume we know the location of the right camera with respect to the

left camera.

* Given a point in the left image, can we constrain
the search region of the point

in the right image? /
2

\ Q

®
Left camera Right camera
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Epipolar constraints

* If the point p in the left image is known, where to look for its correspondence p’in
the right image?

» A line!

* Potential matches for p necessarily lie on the corresponding epipolar line I”.

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html



http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

- Example




Derivation of the epipolar constraint

* The epipolar constraints, for a general stereo system:
given a point x in the left image what is the equation of the epipolar line
in the right image?

Right image

Leftimage

i‘ -
N Ao
<

 Will look at two cases:

e Calibrated cameras (known calibration matrices K, K’)
* Noncalibrated cameras (unknown calibration matrices K, K’)




Epipolar constraint: A calibrated system

plane normal

Note: X’ is written in c.s. of O, while T and X are written in c.s. of O!
Write transformation of X' to X.

X|= RX'|+HT

X

TXX=TXRX +TXT

=T X RX'

X world point

XT(TxX)=0

XT(T x RX') = 0




Epipolar constraint: A calibrated system

X world point

XT(T x RX) = 0

XT([TX]RX,) =0

Let E = [T«]R , then XTEX’ = 0

A 3D point written in the left
and the right c.s., respectively.

* Points on image plane definedasp = A, X and p’ = 1, X', where A;and A, are
scalars.

 Then this holds: p"Ep’ = 0

 Matrix E is called an essential matrix, that relates the corresponding image points
[Longuet-Higgins 1981]



Epipolar constraint: Essential matrix

A 3D pointis mapped to points p and p” which are related by

T A
p Ep =0.
P
P https://brilliant.org/wiki/do
T : 1T t-product-distance-
B between-point-and-a-line/
P
p
Bf )
pzj
[ I’
/ e e’ \\
%) /I/ 0’

I'! = (p"E)T the epipolar line vector I', defined in I, containing p'.

[ = Ep’ the epipolar line vector [, defined in II, containing p.




Epipolar constraint: Essential matrix

* Relates images of corresponding points (meters) in both cameras at a
given rotation and translation.

e Can be calculated from known extrinsic parameters:

X world point

Translation and rotation of
the second camera with
respect (w.r.t.) the first.




Epipolar constraint: A noncalibrated system

* Now consider image points in pixels! ¥
 x' & x ...image plane coordinates

(meters)

x x’

¢ X' & X... image sensor coordinates

(pixels)
0 ~ B "
* Epipolar constraint for a calibrated system:
xTEx' =0
* Coordinates related by camera calibration matrix K: X =Kx X' =K'x'
(pixels)  (meters) (pixels)  (meters)

* Camera calibration matrices K and K’ unknown = derive the epipolar constraint for
the points in pixels




Epipolar constraint: A noncalibrated system

X, X' inimage pixels ; x, x' in meters

O OJ

Epipolar constraint: xTEx' =0 | > XTKTEK'™'2' =0 =) RTFX' =0
(meters)  (meters) %
_ p-Trp'-1
£=Kx y x=K F=KTEK
' =K'x' x| = K"lge' Fundamental matrix
(pixels) (meters) (meters) (pixels) (Faugeras and Luong, 1992)



Epipolar geometry: Fundamental matrix

P N\

e ec

O OJ

£TEX'=0 [y «x"Fx'=0 with F=KTEK'™

* Fx’is epipolar line corresponding to x” (/ = F x’)
* F'xis epipolar line corresponding to x (I’ = F'x)
e Fe’=0 in Fle=0

e Fissingular (rank=2)

* Fhas seven DoF



Epipolar geometry: Definitions

* Baseline: aline connecting the camera centers.
* Epipole: point where the baseline punctures the image plane.
* Epipolar plane: plane connecting two epipoles and a 3D point.

* Epipolar line: intersection of epipolar plane and image plane.

Iy

* All epipolar lines of a single image intersect at the camera epipole.



Special case: Geometry of a simple stereo

* Now consider a calibrated stereo system with parallel optical axes.

* This will simplify the search problem
significantly...
E=T.R
p'Ep' =0

l'=("E)’

Given [x,y] in the left
image, where will the
corresponding [x',y'] be in
the right image?




Special case: Geometry of a simple stereo

E=T.R p'Ep =0 U =?




Geometry of a simple stereo

* Parallel optical axes with aligned image lines - );
A 3D point written in the coordinate o Z

system of the left camera: LP.

* Baseline b,.: displacement of the right
camera along x; .

* Focal length f: distance of image
planes (in both cameras) from

their projection centers.

Depth estimation simplifies...




Geometry of a simple stereo

* The corresponding points lie on the same line p X
=\|Y
of pixels (epipolar line). e Lz




Geometry of a simple stereo

. . . . f"s"'""--.,_
* The corresponding points lie on the same line by Lp X
of pixels (epipolar line) Ty 12
* Align the right projection onto the left Z

image (displace coordinates
of the right projection by “—b,.”).

* Depth from disparity:

* 3D from disparity

b b
szLFx , Y=yL7x , Z=f€x




Stereo image rectification

* Convenient if the lines for searching the matches
correspond to the epipolar lines —as simple as in
parallel cameras system

* Reproject image planes into a common
plane, parallel to the baseline.

« Two homographies (3x3) — matrix transformation A,
for reprojection of left and right image planes.

C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR'99



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Stereo image rectification




Disparity relates the right image to the left

* Assuming perfectly aligned camera axes

* Coordinate of a corresponding point in the right image ==
x coordinate of the point in the left camera + disparity value at that point

Left image: I(x,y) Disparity map d(x,y) Right image: I'(x",y")



Disparity estimation

* Disparity estimation problem: for each pixel in the left image, find the
corresponding pixel in the right image. Difference in x is disparity.

AR - R L (T Ay ST s YR

Left image: I(x,y) Disparity map d(x,y) Right image: I'(x",y")




Disparity estimation
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* For a patch centered at a pixel in the left ignage.. | ' N _
£ |.J| n‘ |I' I||
i i i € o al |I p'".' ' | || LY M ||I1|"I||| I'I‘II' M ﬂl| Iﬁ.l |
 Compare to all patches in the right imagg mﬁ;‘w' A u|L. JUY \|| ||| 1 | J..M\M
along the epipolar line (same line) S = o :

-200
Disparity {pixels)

NCC( ) = 0.01




Disparity estimation

* For a patch centered at a pixel in the left image.. ﬁ Al | ]
H 1Ly i | '||
i 1 1 E o '.J“| M '||p|” || ||r.f|P| |1Ip|||l ﬂl| |"||
 Compare to all patches in the right image 5 M " \ ' H I ||| 'u l n f"v"NJ
along the epipolar line (same line) = 0 - Dim(p;m - =

e Select the patch with greatest similarity.
* Difference in position of left patch and right patch is the disparity.




Disparity estimation

* In practice the disparity values are restricted

Sirnilarity

4
O . . . | Lt |II||| | || III I|Lrl |
to a reasonable range of viable disparities. & [, Ml el VI il 'f Y '|

1
05 [ | | g i L ——

100 o -100 -200 -300

e E.g.: disparity for an object very far away from the target is 0. Dipary e
Amax i specified by the minimum distance of an object from the camera
(see geometrical model of a simple stereo system)



Disparity: influence of the window size

Left image | ~_Small o Large W

 Small window size W/ e Large window size W
* Details potentially better estimated * Details potentially lost
* Noisy disparity * Smooth disparity

e Fast(er) computation e Slow(er) computation




Disparity quality
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Global disparity optimization

Consider a single line (N pixels)

Similarity scores* for different
disparities for each pixel.

Global cost of selecting
disparities d = (d{: dy) :

E(d;) = Egqeq(d;)

v

Edata (di) —e —similarity(d;)

- E(d) = ) Eatald)

l
*Similariti 0 means “no match”i 1 means ”ierfect match”




Global disparity optimization

E(d,) = Edam@ )

v

Edata (di) —e —similarity(d;)

* Disparity calculated independently at each pixel.
* Additional constraints can be imposed on the set of
viable disparity estimates.




Disparity constraints Constraints:

e Order: Points on a single
surface appear in the same

order in both views.

! s.\ ‘ ‘ n _' |
* Slow local depth change:
smooth surfaces should result

in smooth disparity.




Global disparity optimization

“L 0« Consider a single line (N pixels)

=5 . 4« Similarity scores for different

disparities for each pixel.

,___[ * Global cost of selecting
A disparities d = (d:dy) :

E(d;) = Egqra(d;) + AEs(d;)

E(d) = small /

Edata (di) —e —similarity(d;)

S Kiahortyarys i
2 "mﬁmi_‘:;ﬂ
O e

How to find d with
globally minimal Smoothness term that assigns

':::"'” S x =N E(d)7 a'higl'.l cost if disparities change. |
. significantly between consecutive pixels




Global disparity optimization

Optimal sequence of disparities
d°Pt = (d;: dy) obtained by Viterbi
E(d°P*) =minimal algorithm (dynamic program).

v

3,

)

8 3,
E=e I )
<

= .
(@)

@)

-

D

o

Amax * Apply independently to each line.

x=0  x=N
Cox, Hingorani, Rao, Maggs, “A Maximum Likelihood Stereo Algorithm,” CVIU, Vol 63(3), 1996.



Semi global block matching (SGBM)

* Apply line-based optimization across several directions in the image ...




Semi global block matching (SGBM)

e ...aggregate disparity energies from all direction-optimal assignments
and take the disparity at each pixel that received a minimum energy.

Left-to-right line optimization

After aggregating 8-direction energies

Heiko Hirschmuller, “Stereo processing by semiglobal matching and mutual information”. TPAMI, 2008



Application: View interpolation

Right image



Application: View interpolation

Left image



Application: View interpolation

Disparity




Application: View interpolation




Previously at MP...

* Asystem of two or more cameras

X

erfectly aligned cameras

'\‘#' ]

Left image: I(x.y) Disparity map d(x,y) Right image: I'(x,y)




Video view interpolation

1(e)

L. Zitnick et al, High-quality video view interpolation http://research.microsoft.com/IVM/VVV/
using a layered representation, SIGGRAPH 2004



http://research.microsoft.com/IVM/VVV/

Recent works on CNN-based mono-depth

* Train a CNN to predict depth based on a single image

* Unsupervised training: use stereo disparity prediction consistency
L disparit Predicted Right__

CNN

R-eh s » _pdirtpd Ipr. __ Real | eft _

A =

Godard et al., Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR2017



https://www.youtube.com/watch?v=jI1Qf7zMeIs&t=102s

Monodepth 2

-

Godard et al., Digging Into Self-Supervised Monocular Depth Estimation, ICCV2019 [GIT]



https://www.youtube.com/watch?v=sIN1Tp3wIbQ
https://github.com/nianticlabs/monodepth2

Reconstruction by a moving camera

* If a camera is moving freely, the “stereo system” cannot be pre-
calibrated (except from matrix K, that is)

e Actually, we are dealing with multiple “cameras”




Machine perception

STRUCTURE FROM MOTION (SFM)
A BRIEF OVERVIEW




The aim of SFM

* Given several images of same scene

* Reconstruct the camera positions and reconstruct the 3D scene

* Assume a partially-calibrated case, in which the camera calibration
matrices K are known.

Xiao, J. Multiview 3D Reconstruction for Dummies



http://vision.princeton.edu/courses/SFMedu/

SFM pipeline (calibrated cameras)

E‘-vi I (; —
i

* Triangulation requires:
* Knowing correspondences.
* Knowing projection matrices

{P]-}. for all M cameras.
j=1:M

* Computing projection matrix P;
requires: Kj, Rj, L
* Matrices R;, t; can be computed from essential matrix

E; between first and j-th view.

* Matrix E; can be computed from fundamental matrix

Fi- and calibration matrices K;and Ki-.



SFM pipeline

* For simplicity, consider a pair of views with known calibration matrices
Ky K,

e Actually, if the camera is moving, the calibration matrices are equal
K=K,=K,

* The approach generalizes to multiple views

K, K,
? |

keypoints\ o
fundamental essential

match+» . .
matrix matrix

=»[R]|t] =» triangulation —» L @/@{

keypoints/

Image from: Xiao, J. Multiview 3D Reconstruction for Dummies



http://vision.princeton.edu/courses/SFMedu/

Fundamental matrix estimation asoknown as weak caiibration.

* Assume known correspondences {x;}i—1.n, 1X'i }i=1:n
 Estimate F that minimizes reprojection errors €(F)

-
”
P ~

li = FX’i

F—l " d?(x;, Fx';) + d?(x;, FTx;
«(F) =5 ), (@20, FX) +d2 (6 FTx)))
=

* Nonlinear optimization (Levenberg-Marquardt), requires good initial estimate.

* Usually initialized by 8-point algorithm (described next).
e



Fundamental matrix estimation: Eight-point algorithm

Coordinates of a pair of corresponding points: X=(u,v, 1)T, x’=(u’,v’, 1)T

Epipolar constraint: x’ Fx' = 0 r?ﬂ
12

Fi3

Fii Fy Fig\ (o F;

(u? .U? ]') FE] FEE F23 .U! — D > (HHF? HUF? u, U'U.!? UUI? v, H!? U!? ]') F22 = D
Fy Fy Fy )\ 1

F
! ! ! ! !/ ! F32
F33 + Fijau + F3qu” + Fo3v + F3ov" + Fjquu + Fouv + Foqu v+ Fyoovv =0 \ Fas )
(one equation per correspondence — require 8) C.
g q Minimize:
- [ Fu ]l [O0] N
/ ! / ! ! ! 11
uiw;  uv; up vuy; o vvy v oup vy 1 T 1 1?2
ugu% ugvé Us vgu% vgvé vo  uh vh 1 ?E 8 Homogeneous z(xl Fx';)
! / —
’U,3’UJ,3 ’LL3’U? Uus “U3’UJI3 U3’U? Us ulg U§ 1 F21 0 System ! =1
UgUy U4Vy  Ug VaUy V4Vy V4 Uy Uy 1 Fo | =10 with constraint
usug  UsVE  us vsup  UsUL U5 up  vE 1 2 0 Af =0 5 _
UglUr  UgUs Ug Vgl Vgl Vg U v 1 23 ”F” =1
6Us UV U UVelUg VelUg Vs Ug Vg Fiy 0
uruL  urv,  wy  vrur  vrvhk vy wn vh 1 > 0
/ / ! ! / / 32 .
| ugug ugVg Us Uglg Uglg Ug Ug Vg 1 Fus 0 F « last eigenvector(A)




Normalized 8-point algorithm

1. Precondition: Center image points, and scale such that the standard deviation
becomes v/2 pixels.
« X=Tx, ¥ =T'x'

2. Apply 8-point algorithm to calculate F from the preconditioned points.

3. Enforce rank=2

(decoSmDpose F, by SVD set the smallest eigenvalue to zero and reconstruct F):
F \=£UDVT

diq vi1 o V3]’
dy, [ P ] Set d;;=0 and reconstruct F: F =1U
@ U3p = Usg

4. Transform the fundamental matrix back to original units:

dll

—U d,o 14

0

Let T and T’ be the transformations used to precondition the points in each image
separately. Then the fundamental matrix equals F = T'TFT.



Fundamental matrix estimation

* In general, the correspondences are unknown

* Jointly find the fundamental matrix F AND the correspondences!
(pairs across two views (u’,v’) <> (u,v)).

 Approach
1. Find keypoints in each image
2. Calculate possible matches (potential matches)

3. Robustly estimate the epipolar geometry by RANSAC



Fundamental matrix estimation

1. Find key-points (eg., Harris corners)




Fundamental matrix estimation

2. Find correspondence using proximity constraints




Fundamental matrix estimation

e Filter the correspondences by visual similarity

(e.g.,using normalized cross correlation or by a more advanced descriptor)

X :‘,’\ - Y ry .-
\_ : W
", - .

* Many wrong matches (10-50%), but enough to compute F




RANSAC to robustly estimate F

 Randomly select a set of 8 correspondences

* Calculate F using these correspondences

* This gives the epipolar constraint!

* Numb ' lie close to their
epipolar i orresponding points
from ;.

* Choose F with maximal support (#inliers)

o NS WS QA
.
.
R



Input correspondences

* Many wrong matches (10-50%), but enough to compute F




Pruned correspondences

* Correspondences consistent with the epipolar constraint




Epipolar constraint visualized




Summary

e Robust estimation of F

~ Potential matches RANSAC Eplpolar geom.

* Improve by a nonlinear optimization of the cost function w.r.t. F using
inliers only:
By =gy (@0, P+ d(x/,FTx)
i=1




SFM pipeline

. . Nice video (without last part — dense reconstruction)
 Multiple-view SFM
Eﬂ . https://www.youtube.com/watch?v=i7ierVkXYa8
keypoints\ R
fundamental essential
match=» , ->  =»[R]|t] =» triangulation —> @ﬂ
/ matrix matrix
keypoints i ﬁ—J

e 8-point algorithm initializes a nonlinear optimization of reprojection
errors (bundle adjustment):

{R}k' 1]} = arngHZZ(xu [R;|t;]X ij)

* For an excellent overview of SFM see:
Xiao, J. Multiview 3D Reconstruction for Dummies



http://vision.princeton.edu/courses/SFMedu/

Try SFM at home

 Bundler: structure from Motion (SfM) for Unordered Image Collections

PhotoTurism video on YouTube

L4
v,
>
' ve Wy
a - ‘ o " <‘v.
S DR
- 44 9 G 3
?};
2 A 3
“ .
L
252 B
»
P

Software written by Noah Snavely
Download Bundler from the bundler sfm repository on GitHub

| What is Bundler? | Downloading Bundler | Documentation | References | Links |

‘What is Bundler?

Bundler is a structure-from-motion (SfM) system for unordered image collections (for instance, images from the Internet)
written in C and C++. An earlier version of this SfM system was used in the Photo Tourism project. For structure-
from-motion datasets, please see the BigSFM page.

Bundler takes a set of images, image features, and image matches as input, and produces a 3D reconstruction of camera and
(sparse) scene geometry as output. The system reconstructs the scene incrementally, a few images at a time, using a
modified version of the Sparse Bundle Adjustment package of Lourakis and Argyros as the underlying optimization engine.
Bundler has been successfully run on many Internet photo collections, as well as more structured collections.

The Bundler source distribution also contains potentially userful implementations of several computer vision algorithms,
including:

e F-matrix estimation
e Calibrated 5-point relative pose

¢ Triangulation of multiple rays httpS ://WWW.yO utu be .CO m/WatCh ?V=5 rYyB4p KP RO


http://www.cs.cornell.edu/~snavely/bundler/
https://www.youtube.com/watch?v=5Ji84zb2r8s

Machine perception

ACTIVE STEREO




Structured light stereo

* |dea: project ,structured” light patterns over the object

camera

* Correspondence problem simplifies

 Canuse only a single camera I'
projector

Epipolar geometry still holds!

\




Laser scanning

Object

Direction of travel

\(\ CCD image plane
& Y Cylindrical lens

Laser CCD

Laser sheet

e Optical triangulation

* Project a laser light plane

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

* Move over an object (the motion has to be accurately measured!)

* Very precise way to scan using structured light.



http://graphics.stanford.edu/projects/mich/

Obtained models

Michelangelo’s David (Florence)

The Digital Michelangelo Project, Levoy et al.

79



Obtained models

The Digital Michelangelo Project, Levoy et al.




Multi-band triangulation

* Project multiple bands to speedup scanning
* But, which pixels belong to which band?

e Answer #1: Assume smooth surface

e.g. Eyetronics’ ShapeCam




Multi-band triangulation

* Project multiple bands to speedup scanning
* But, which pixels belong to which band?

* Answer #2: Project color bands (or points)

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and
Multi-pass Dynamic Programming. 3DPVT 2002



http://grail.cs.washington.edu/projects/moscan/

Quality control

* Automatic car inspection
* Industrial project (2016)

* Designed sensory system
and software




Accuracy and Resolution of Kinect Depth Data for Indoor

In gaming industry (2010)

Kourosh Khoshelham and Sander Oude Elberink

* Project a point pattern for ultra fast triangulation!

RGB IR

Projector


http://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CC8QFjAC&url=http://www.mdpi.com/1424-8220/12/2/1437/pdf&ei=haaGVLbaFIKBU6PvgLgD&usg=AFQjCNGgWjCktSSSBqlud5IkJDNotob3DA&sig2=0gFQp-KwLRtB1Ki1kV7ekg&bvm=bv.81449611,d.d24&cad=rja
http://www.google.si/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CC8QFjAC&url=http://www.mdpi.com/1424-8220/12/2/1437/pdf&ei=haaGVLbaFIKBU6PvgLgD&usg=AFQjCNGgWjCktSSSBqlud5IkJDNotob3DA&sig2=0gFQp-KwLRtB1Ki1kV7ekg&bvm=bv.81449611,d.d24&cad=rja

In phones (2017)

* Project a point pattern for ultra fast triangulation!

https://www.youtube.com/watch?v=0vVKnC6gGtg
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* Patent Primesense (Kinect): http://patentscope.wipo.int/search/en/W02007043036



http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&field-author=David%20A.%20Forsyth&ie=UTF8&search-alias=books&sort=relevancerank
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&field-author=Jean%20Ponce&ie=UTF8&search-alias=books&sort=relevancerank
http://vision.princeton.edu/courses/SFMedu/

